Analysis of an Exact Fractional Step Method
نویسندگان
چکیده
An exact fractional step or projection method for solving the incompressible Navier–Stokes equations is analyzed. The method is applied to both structured and unstructured staggered mesh schemes. There are no splitting errors associated with the method; it satisfies the incompressibility condition to machine precision and reduces the number of unknowns. The exact projection technique is demonstrated on a two-dimensional cavity flow and a multiply connected moving domain with a free surface. Its performance is compared directly to classic fractional step methods and shown to be roughly twice as efficient. Boundary conditions and the relationship of the method to streamfunction-vorticity methods are discussed. c © 2002 Elsevier Science (USA)
منابع مشابه
On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملPresentation of two models for the numerical analysis of fractional integro-differential equations and their comparison
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
متن کاملExact solutions of a linear fractional partial differential equation via characteristics method
In recent years, many methods have been studied for solving differential equations of fractional order, such as Lie group method, invariant subspace method and numerical methods, cite{6,5,7,8}. Among this, the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order. In this paper we apply this method f...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملLie symmetry Analysis and Explicit Exact Dolutions of the Time Fractional Drinfeld-Sokolov-Wilson (DSW) System
In this study coupled system of nonlinear time fractional Drinfeld-Sokolov-Wilson equations, which describes the propagation of anomalous shallow water waves is investigated. The Lie symmetry analysis is performed on the model. Employing the suitable similarity transformations, the governing model is similarity reduced to a system of nonlinear ordinary differential equations with Erdelyi-Kober ...
متن کامل